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Prostate cancer (Pca) is the most common malignancy and the sec-
ond most dominant cause of cancer-related deaths in men in West-
ern countries, with an incidence rate composed of 200 per 100,000 
men.1 The early diagnosis of Pca will lead to an obvious increase 
in patients’ survival, and as a result, a decrease in treatment costs.2 
Rapid and accurate diagnosis of Pca is crucial for improving out-
comes.

Multiparametric prostate MRI (mp-MRI) is an emerging medi-
cal imaging modality that combines anatomic MRI with functional 
MRI technique, allowing for diagnosis, characterization, stag-
ing, and treatment strategy of Pca.3 T2-weighted imaging (T2WI) 
provides abundant anatomical details and makes major contribu-
tions to the localization and characterization of abnormalities in 
the prostate.4 T2WI images are capable of identifying the tumor 
lesion and assessing seminal vesicles, neurovascular bundles as 
well as prostate margins since T2WI allows for depicting the zonal 
anatomy and capsules, while the peripheral zone (PZ) is typically 
of intermediate to high signal intensity (SI) on T2WI images.5,6 As 
it is reported, there exists a strong correlation between tumor den-
sity and various tumor biological markers including Gleason score, 
tumor stage, as well as surgical margin status.7 Therefore, many 
studies have investigated the potential value of T2WI in localiza-
tion of Pca. Recently, precision medicine has been introduced into 
routine clinical care with an increasing number of treatments being 
tailored to patient-specific characteristics. As a result, radiomics-
based quantitative analysis for imaging data has been popularly 
and widely utilized.8

A recently published article in Exploratory Research and Hy-
pothesis in Medicine by Ng et al. has compared different kernels of 
support vector machines (SVMs), one of the most popular super-
vised learning algorithms, to classify prostate cancerous tissues.7 

The application of MRI using SVM algorithm with different kernels 
has not only enabled automatic classification of prostate cancerous 
tissue but also provided a non-invasive solution to assess Pca. The 
outlined merits could be summarized as follows: 1) Different SVM 
Kernels have been used to classify Pca; 2) Pca patients have been 
recruited from their own hospital instead of the public databases. 
In their study, machine learning is adopted since computer-aided 
detection and diagnosis calculated by machine learning facilitates 
interpreting medical imaging findings and reducing interpretation 
times. The article by Ng et al. is a very thorough, beautifully written 
and illustrated research paper on the utilization of different kernels 
in SVMs to classify prostate cancerous tissues on T2WI images as 
compared to previous studies, whose limitations could be attrib-
uted to the exclusion of late stages of Pca,9 without reference to the 
kernel used for the SVMs algorithm,10 or a lower yield accuracy.11 
In conclusion, 17 features are extracted from the demarcated re-
gion of interest (ROI), and 5 features are retained by the principle 
component analysis (PCA) for SVM classification with the utiliza-
tion of radical basis function (RBF), Gaussian, and lineal kernels. 
Consequently, SVMs using RBF yield the largest sensitivity and the 
second-largest accuracy.

The proposed application of MRI using SVM algorithm with 
different kernels could pave the way for identification of pros-
tate cancerous tissue in a non-invasive method. In future, mp-
MRI combining anatomical MR imaging with functional MRI 
sequences could provide more useful information in Pca de-
tection, disease monitor during active surveillance and patient 
follow-up.
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